

13 борьба

ОЦЕНКА ДОСТУПНОГО ПОТЕНЦИАЛА СОЛНЕЧНОЙ ЭНЕРГИИ НА ТЕРРИТОРИИ КАЗАХСТАНА

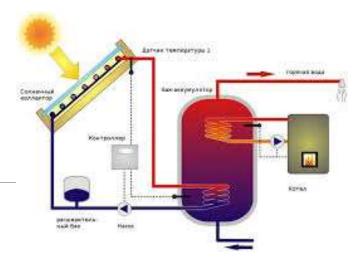
ЛЕКЦИЯ 11

Солнечная энергия по сравнению с другими видами энергии обладает исключительными свойствами:

- ✓ практически неисчерпаема,
- ✓ экологически чиста,
- ✓ управляема, а
- ✓ по величине в тысячи раз превосходит всю энергию других природных источников.

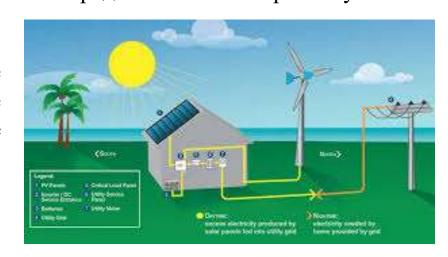
Экологические преимущества солнечной энергии:

- 1. Уменьшение загрязнения воздуха.
- 2. Сокращает потребление воды.
- 3. Снижает зависимость от не возобновляемых источников энергии.
- 4. Улучшает здоровье человечества в долгосрочной перспективе.
- 5. Помогает адаптироваться к климатическим изменениям.


Широта, °	Интенсивность, Вт/м²	Площадь, тыс. км²
66,5	137	244
52	160	209
45	171	195
23,5	217	154
0	251	133

На экваторе интенсивность составляет 251 Bt/m^2 , необходимая площадь — 133 тыс. km^2 .

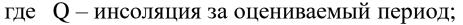
Потенциал эксплуатационного ресурса солнечной энергии оценивается по мощности от 100 до 500 ТВт. Из-за малой плотности этой энергии техносфера потребляет ничтожную ее часть.


Гелиоэнергетиков больше интересуют способы концентрирования солнечной энергии, а также ее прямое преобразование в электроэнергию.

Работы по трансформации солнечной энергии в электрическую энергию ведутся по двум направлениям:

- создание солнечных электростанций (СЭС), в которых теплоэлектропаровой котёл, характерный для ТЭС, заменен солнечным паровым котлом;
- разработка полупроводниковых фотоэлектропреобразователей фотоэлементов, способных превращать солнечную энергию непосредственно в электрическую.

Наиболее практическое применение в мире получили гибридные солнечно-топливные электростанции.


Коллекторы подразделяют на две большие категории:

- солнечные коллекторы без концентраторов (плоские коллекторы) и
- с концентраторами.

Для оценки радиационных ресурсов в гелиотехнике может использоваться критерий:

$$Q = Q_0 - n^2/2$$

 Q_0 – возможная инсоляция;

n – общая облачность(в долях единицы) за тот же период.

даже при сплошной облачности средняя суммарная радиация составит половину возможной

Другим критерием можно использовать **суммы ясных и полуясных дней** в том или ином районе, которая должна **превышать 200 дней в г**оду

Пример: при выборе комплекса радиационных показателей для оценки гелиоресурсов учитываются следующие показатели:

- 1 Из трех видов коротковолновой радиации прямая, рассеянная и суммарная для районирования выбирается суммарная радиация и используюся среднемесячные значения (МДж/м²).
- 2 При равных суммах среднемесячной суммарной радиации в двух районах преимущество отдается тому району, в котором большая доля (в суммарной радиации) приходится на прямую, а меньшая на рассеянную солнечную радиацию. В связи с этим в качестве показателя можно использовать отношение (%) годовой суммы прямой солнечной радиации на горизонтальную поверхность к годовой сумме суммарной радиации для каждого района (по данным актинометрических станций).
 - В качестве показателя используется тип распределения суточных сумм суммарной радиации характеризующий внутримесячную изменчивость (повторяемость) рассматриваемых величин.
 - Число часов суммарной радиации со средней часовой мощностью более 600 Bт/м² (2,16 МДж/м²) в годовой совокупности многолетних внутрисуточных распределений. Уровень 600 Bт/м² можно признать достаточным.
 - Относительная характеристика межгодовой изменчивости коэффициент вариации годовых сумм суммарной радиации. Данный коэффициент отражает степень устойчивости (из года в год) радиационного режима.

Наиболее удобными формами представления актинометрической информации для целей гелиотехники

Значения суммарной продолжительности (t, час) при заданных величинах притока прямой солнечной радиации на нормальную к лучу и горизонтальную поверхность не менее 2,88 МДж/м 2 (1), 2,16 МДж/м 2 (2), 1,5 МДж/м 2 (3) и интервала времени с солнцем 95% обеспеченности ($T_{95\%}$, час)

		Нормальная к лучу поверхность										Горизонтальная поверхность								
Название станции	ясное небо					_ средние условия облачности				ясное небо				_ средние условия облачности						
	\bar{S} 10 ⁶	T _{95%} ,		t, час		$S 10^6$	T _{95%} ,		t, час		S 10 6	T _{95%} ,	t, час		S 10 6	T _{95%} ,		t, час		
	Дж/м ²	час	1	2	3	Дж/м ²	час	1	2	3	Дж/м ²	час	1	2	3	Дж/м ²	час	1	2	3
	Январь																			
Рудный	2,15	4,6	2,3	1,7	1,2	0,97	5,3	1,1	0,6	0,3	0,29	8,0	0,0	0,0	0,0	0,22	6,6	0,0	0,0	0,0
Астана, ГМО	2,15	6,9	3,4	2,5	1,8	0,87	7,8	1,4	0,6	0,3	0,38	8,4	0,2	0,0	0,0	0,21	8,4	0,0	0,0	0,0
Уральск, ГМБ	1,92	7,1	3,2	2,3	1,6	0,73	8,1	1,0	0,4	0,2	0,34	8,4	0,1	0,0	0,0	0,19	8,4	0,0	0,0	0,0
Жаныбек	2,21	6,4	3,3	2,4	1,7	0,61	8,1	0,7	0,2	0,1	0,47	8,6	0,4	0,1	0,0	0,17	8,6	0,0	0,0	0,0
Актау	2,61	6,2	3,5	2,7	2,1	0,74	7,0	0,9	0,4	0,1	0,85	8,2	1,4	0,6	0,3	0,25	8,8	0,0	0,0	0,0
Теректы	2,44	6,5	3,5	2,7	2,0	0,92	7,3	1,4	0,7	0,3	0,52	8,7	0,5	0,1	0,0	0,20	8,7	0,0	0,0	0,0
Жезказган	2,50	6,6	3,6	2,8	2,1	1,15	6,9	1,9	1,1	0,6	0,58	8,7	0,7	0,2	0,1	0,26	8,7	0,0	0,0	0,0
Балхаш, ОГМО	2,58	6,7	3,7	2,9	2,2	1,46	7,0	2,5	1,6	1,0	0,65	8,9	0,9	0,3	0,1	0,39	8,9	0,2	0,0	0,0
Семипалатинск, АС	2,07	6,9	3,4	2,4	1,7	0,85	8,1	1,4	0,6	0,3	0,40	8,5	0,2	0,0	0,0	0,21	8,5	0,0	0,0	0,0
Селезневка	1,84	7,0	3,1	2,2	1,5	0,82	7,8	1,3	0,6	0,2	0,38	8,6	0,2	0,0	0,0	0,20	8,6	0,0	0,0	0,0
Приозерный	2,27	6,7	3,5	2,6	1,9	1,18	7,5	2,1	1,2	0,7	0,56	8,7	0,6	0,2	0,1	0,30	8,7	0,1	0,0	0,0
Аральское Море	2,56	6,5	3,6	2,8	2,1	1,23	7,0	2,1	1,2	0,7	0,63	8,9	0,8	0,3	0,1	0,29	8,9	0,1	0,0	0,0
Айдарлы	2,73	5,9	3,4	2,7	2,1	1,41	6,9	2,4	1,5	0,9	0,78	9,2	1,3	0,6	0,2	0,42	9,2	0,3	0,1	0,1
Алматы, ГМО	2,12	6,4	3,1	2,3	1,6	0,83	7,8	1,3	0,6	0,2	0,63	9,3	0,9	0,3	0,1	0,28	9,3	0,0	0,0	0,0
Алматы, агро	2,96	6,2	3,7	3,0	2,3	1,55	6,7	2,5	1,7	1,0	0,95	8,5	1,7	0,9	0,4	0,52	9,3	0,5	0,1	0,1

В январе при ясном небе величина притока прямой солнечной радиации с вероятностью не превышения 95% составляет 8–13 МДж/м² в северных районах республики, 15–17 МДж/м² в центральном регионе, достигая 18,7 МДж/м² в районе озера Балхаш. При средних условиях облачности значения величин $S_{p=95\%}$ значительно уменьшаются (примерно в два раза).

Значения суммарной продолжительности (t, час) при заданных величинах притока прямой солнечной радиации на нормальную к лучу и горизонтальную поверхность не менее 2,88 МДж/м 2 (1), 2,16 МДж/м 2 (2), 1,5 МДж/м 2 (3) и интервала времени с солнцем 95% обеспеченности ($T_{95\%}$, час)

		Нормальная к лучу поверхность										Горизонтальная поверхность								
Название станции	_ ясное небо					_ средние условия облачности				_ ясное небо				_ средние условия			облачности			
	S 10 6	T _{95%} ,	t, час			S 10 6	$T_{95\%}$		t, час		S 10 6	T _{95%} ,	t, час			S 10 6	T _{95%} ,	t, час		
	Дж/м ²	час	1	2	3	Дж/м ²	час	1	2	3	Дж/м ²	час	1	2	3	Дж/м ²	час	1	2	3
	Июль																			
Рудный	2,45	12,2	6,6	5,0	3,8	1,36	12,8	4,2	2,6	1,5	1,23	16,5	4,9	2,8	1,6	0,90	15,9	3,0	1,4	0,6
Астана, ГМО	2,88	9,5	5,6	4,5	3,5	1,67	10,0	4,1	2,7	1,8	1,81	14,5	6,3	4,4	2,9	1,15	14,2	3,9	2,2	1,2
Уральск, ГМБ	2,68	9,9	5,6	4,4	3,4	1,59	10,6	4,1	2,7	1,7	1,66	15,2	6,2	4,1	2,7	0,94	16,2	3,3	1,6	0,8
Жаныбек	2,77	10,0	5,8	4,6	3,5	1,64	10,8	4,3	2,9	1,9	1,79	13,8	6,0	4,1	2,8	1,09	15,3	3,9	2,1	1,1
Актау	2,62	9,9	5,6	4,3	3,3	1,76	10,8	4,6	3,2	2,1	1,74	14,2	6,0	4,1	2,7	1,15	15,2	4,1	2,3	1,2
Теректы	2,88	9,6	5,7	4,5	3,5	1,77	10,3	4,4	3,1	2,0	1,81	14,8	6,4	4,5	3,0	1,13	15,0	4,0	2,2	1,2
Жезказган	2,96	9,5	5,7	4,6	3,6	1,97	10,2	4,8	3,4	2,4	1,88	14,4	6,5	4,6	3,1	1,13	15,6	4,1	2,3	1,2
Балхаш, ОГМО	2,99	9,7	5,9	4,7	3,7	2,16	10,5	5,2	3,9	2,8	1,89	14,5	6,5	4,6	3,2	1,36	15,5	5,1	3,2	1,9
Семипалатинск, АС	2,89	9,5	5,7	4,5	3,5	1,64	10,4	4,2	2,8	1,8	1,84	14,2	6,3	4,4	3,0	1,07	15,9	3,9	2,1	1,1
Селезневка	2,90	10,1	6,0	4,8	3,8	1,67	11,4	4,7	3,1	2,0	1,83	15,5	6,8	4,8	3,2	1,13	16,0	4,3	2,4	1,3
Приозерный	3,07	9,5	5,8	4,7	3,7	2,05	10,2	4,9	3,6	2,5	1,89	14,8	6,7	4,7	3,2	1,32	14,7	4,7	2,9	1,7
Аральское Море	2,86	9,8	5,8	4,6	3,6	2,14	10,4	5,2	3,8	2,7	1,80	14,9	6,5	4,5	3,0	1,41	14,8	5,1	3,2	1,9
Айдарлы	3,04	9,8	6,0	4,8	3,8	2,05	10,4	5,0	3,6	2,6	1,96	14,3	6,6	4,7	3,3	1,45	15,2	5,4	3,4	2,1
Алматы, ГМО	2,79	9,9	5,8	4,6	3,5	1,77	11,0	4,7	3,3	2,2	1,79	14,9	6,4	4,5	3,0	1,15	15,1	4,1	2,3	1,2
Алматы, агро	2,89	10,1	6,0	4,8	3,7	1,87	10,9	4,9	3,4	2,3	1,89	14,6	6,6	4,6	3,2	1,15	15,1	4,1	2,3	1,2

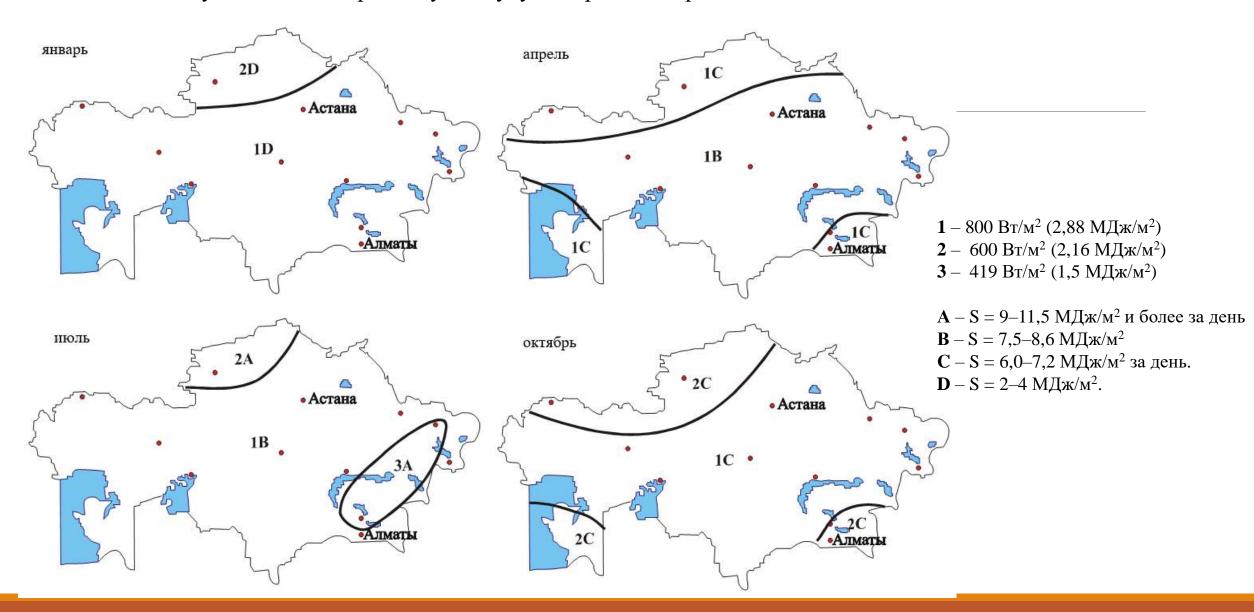
Летом при более высоком притоке прямой солнечной радиации на нормальную к лучу поверхность влияние облачности на уменьшение величин S_p сказывается не очень существенно, как в зимний период. Так, на станции Айдарлы суточная величина $S_{p=80\%}$ равная 24,2 МДж/м² при ясном небе незначительно превышает соответствующую величину при средних условиях облачности, которая равна 17,3 МДж/м², т.е. в 1,3 раза. На станции Рудный подобное соотношение составляет 1,7 так как находится в пределах 18,3–10,6 МДж/м².

На основе проведенного анализа потоков солнечной радиации можно сделать вывод, что в пределах территории Казахстана наблюдается достаточно большое число ясных дней во все сезоны года с высоким значением солнечной энергии.

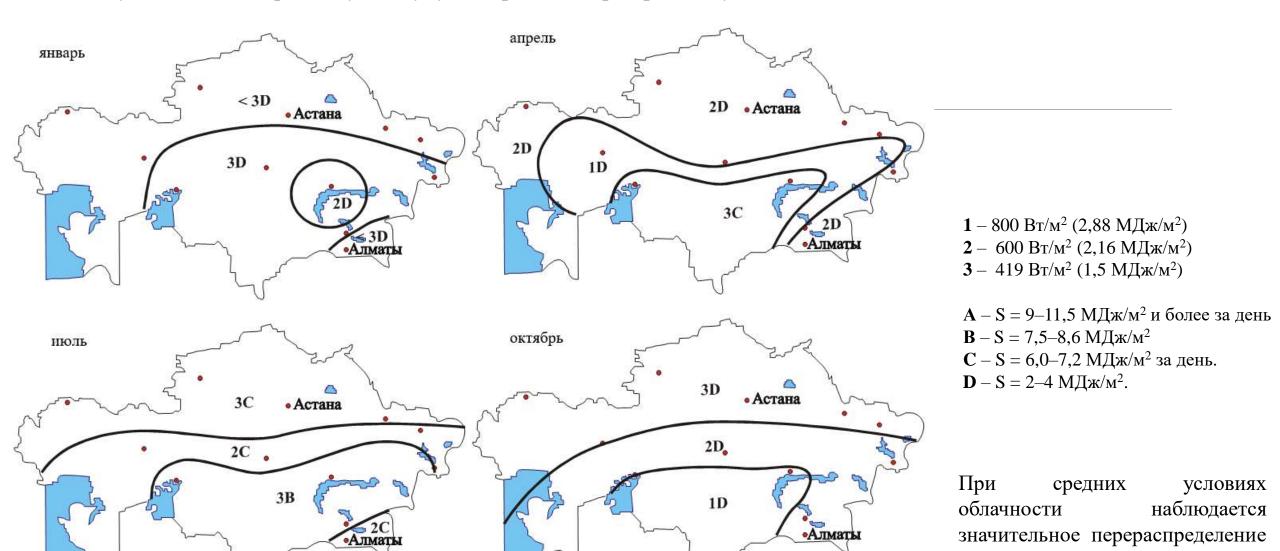
Районирование территории по условиям обеспеченности гелиоресурсами

Вся территория Казахстана отнесена к приоритетному району, в то время как приток солнечной радиации существенно изменяется во времени и пространстве. В комплекс показателей потенциала солнечной энергии следует включить вероятностные величины притока прямой солнечной радиации за короткие интервалы времени (часы, сутки) с учетом изменчивости погрешности их интерполяции по площади.

Статистический анализ и выявленные закономерности пространственно-временного распределения притока прямой солнечной радиации на различно ориентированные поверхности при динамичном изменении условий облачности в течение дня позволили предложить следующие критерии потенциала солнечной энергии.

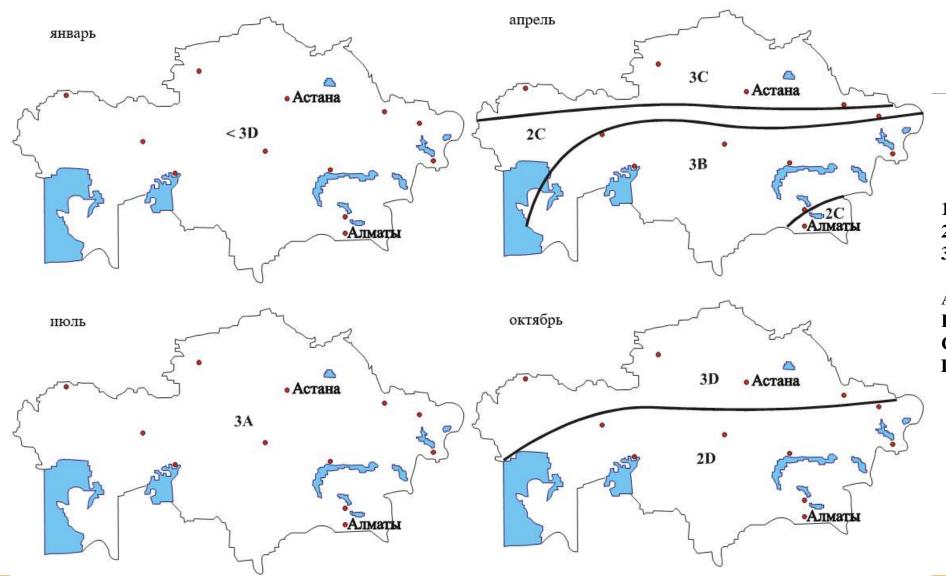

В качестве интенсивности солнечной радиации принято три уровня: 419 BT/M^2 (1,5 $MДж/M^2$), 600 BT/M^2 (2,16 $MДж/M^2$) и 800 BT/M^2 (2,88 $MДж/M^2$).

Суммарная продолжительность (t, час) в течение дня, когда конкретный уровень интенсивности солнечной радиации будет равен или превышен при определенной среднечасовой величине S и продолжительности солнечного сияния 95% обеспеченности ($T_{p=95\%}$).

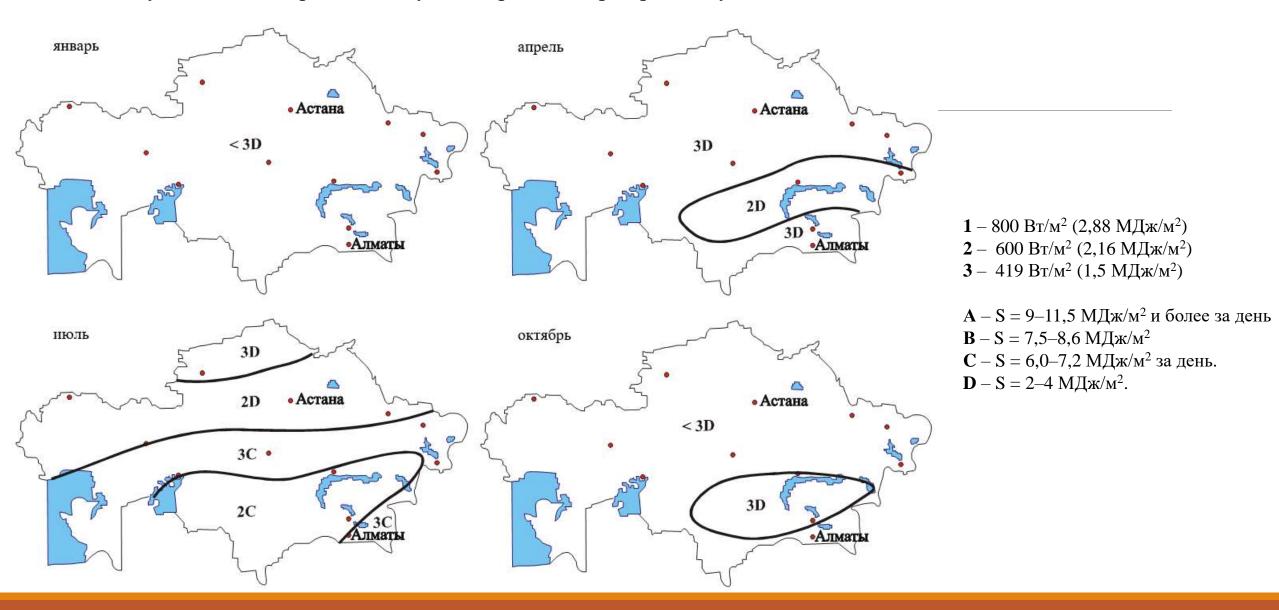

Значения критериев потенциала солнечной энергии за часовой и суточный интервал времени

Г	Триоритет	Солнечная	Приоритет по t, час								
Г	10 уровню S	радиация за час, МДж/ м²	Α	В	С	D					
	1	2,88	4,0	3,0	2,5	1,5					
	2	2,16	5,0	4,0	3,0	1,5					
	3	1,50	6,0	5,0	4,0	1,5					
	Сумма за с	сутки S, МДж/ м²	9–11,5 и более	7,5–8,6	6,0–7,2	2,2–4,3					

Районирование территории Казахстана по потенциалу солнечной радиации поступающей на нормальную к лучу поверхность при ясном небе



Районирование территории Казахстана по потенциалу солнечной радиации поступающей на нормальную к лучу поверхность при средних условиях облачности


гелиоресурсов по территории

Районирование территории Казахстана по потенциалу солнечной радиации поступающей на горизонтальную поверхность при ясном небе

- $1 800 \,\mathrm{BT/M^2} \,(2,88 \,\mathrm{MДж/M^2})$
- $2 600 \text{ Bt/m}^2 (2,16 \text{ MДж/m}^2)$
- $3 419 \,\mathrm{BT/M^2} \,(1.5 \,\mathrm{MДж/M^2})$
- $A S = 9 11,5 \text{ MДж/м}^2$ и более за день
- $\mathbf{B} \mathbf{S} = 7,5-8,6 \text{ МДж/м}^2$
- $C S = 6,0-7,2 MДж/м^2$ за день.
- $D S = 2-4 MДж/м^2$.

Районирование территории Казахстана по потенциалу солнечной радиации поступающей на горизонтальную поверхность при средних условиях облачности

